On the Instability of Solitary-wave Solutions for Fifth-order Water Wave Models

نویسنده

  • JAIME ANGULO PAVA
چکیده

This work presents new results about the instability of solitarywave solutions to a generalized fifth-order Korteweg-deVries equation of the form ut + uxxxxx + buxxx = (G(u, ux, uxx))x, where G(q, r, s) = Fq(q, r) − rFqr(q, r) − sFrr(q, r) for some F (q, r) which is homogeneous of degree p+ 1 for some p > 1. This model arises, for example, in the mathematical description of phenomena in water waves and magnetosound propagation in plasma. The existence of a class of solitary-wave solutions is obtained by solving a constrained minimization problem in H2(R) which is based in results obtained by Levandosky. The instability of this class of solitary-wave solutions is determined for b 6= 0, and it is obtained by making use of the variational characterization of the solitary waves and a modification of the theories of instability established by Shatah & Strauss, Bona & Souganidis & Strauss and Gonçalves Ribeiro. Moreover, our approach shows that the trajectories used to exhibit instability will be uniformly bounded in H2(R).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solitary Wave solutions of the BK equation and ALWW system by using the first integral method

Solitary wave solutions to the Broer-Kaup equations and approximate long water wave equations are considered challenging by using the rst integral method.The exact solutions obtained during the present investigation are new. This method can be applied to nonintegrable equations as well as to integrable ones.

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

Existence and Orbital Stability of Solitary-Wave Solutions for Higher-Order BBM Equations

This paper discusses the existence and stability of solitary-wave solutions of a general higher-order Benjamin-Bona-Mahony (BBM) equation, which involves pseudo-differential operators for the linear part. One of such equations can be derived from water-wave problems as second-order approximate equations from fully nonlinear governing equations. Under some conditions on the symbols of pseudo-dif...

متن کامل

Dynamics of Bright Solitary-waves in a General Fifth-order Shallow Water-wave Model

New analytic sech2-type traveling solitary-wave solutions, satisfying zero background at infinity, of a general fifth-order shallow water-wave model are found and compared with previously obtained non-zero background solutions. The allowed coefficient regions for the solitary-wave solutions are classified by requiring the wave number and angular frequency to be real. Detailed numerical simulati...

متن کامل

Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations

In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003